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Velocity distributions in plane turbulent channel flows 
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Measurements of time-mean velocity have been made in a flat channel (aspect ratio 
12 to 28), one of whose walls consists of a belt which can be moved in the direction of 
air blown through the channel or in the opposite direction. The wall layers generated 
in twenty-six turbulent flows, including plane Poiseuille and plane Couette cases, are 
compared with analytical results obtained by Kader & Yaglom and by Townsend. 
Empirical descriptions are developed for the viscous, logarithmic and gradient por- 
tions of these wall layers. The core regions of both Couette-type and Poiseuille-type 
flows are also described empirically. Parallels are drawn with developing boundary 
layers, and phenomena are identified that relate to the relaminarization of boundary 
layers. 

1. Introduction 
The measurements presented in this paper are intended to describe fully-developed 

turbulent flow between parallel walls, one of which may be in motion relative to the 
other. The velocity of the moving wall is in the direction of the mean flow through the 
channel (or directly opposed to it), and the hypothetical flow is therefore unidirectional. 
The flows actually studied are those in a flat channel (aspect ratio 12 to 28 in these 
tests) through which air is blown, and one of whose sides consists of a flat belt which 
can be moved either with the air blown through the channel or in the opposite direction. 
The experimental situation is shown schematically in figure 1.  It is supposed that the 
motion near the mid-plane and exit from this channel, that is, in the vicinity of the 
access ports shown, approximates to the fully-developed unidirectional motion des- 
cribed above. 

Earlier workers have studied two particular flows of the class considered here: 
pure pressure or plane Poiseuille flow (Laufer 1951 ; Comte-Bellot 1965; Hussain & 
Reynolds 1975) and pure shearing or plane Couette flow (Robertson & Johnson 1970; 
Huey & Williamson 1974; Szeri, Yates & Hai 1976). We know of no investigation of 
more varied combinations of blowing velocity and belt speed. 

The empirical information to be presented has a number of immediate applications 
in engineering practice. Perhaps the most obvious is in predicting the motion within 
turbulent bearing films, which has been considered by Constantinescu (1959), Rey- 
nolds (1963), and Saibel & Macken (1974), amongst others. The usual approximation 
of lubrication theory represents bearing films by splicing together a series of fully- 
developed flows of the kind studied here. The results of this investigation relate also 
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FIGURE 1. Schematic view of test channel showing the belt 
which provides the moving wall. 

to the flow through a flat channel whose walls are of differing roughness (Hanjalid & 
Launder 1972) and, in a general way, to the flow through an annular passage. 

The present measurements are of more general application in providing insight 
into the role of the shear-stress gradient in turbulent wall layers, in the absence of 
variability in the upstream ‘history’ of the flow. Thus the present study is comple- 
mentary to that of Kader & Yaglom (1978) who collated results for many developing 
boundary layers exposed to adverse pressure gradients and deduced similarity laws 
that described many such flows with good accuracy. The present investigation is more 
restricted than the survey of Kader &, Yaglom, in considering only wall layers that 
are nearly fully developed. However, its scope is wider in that we consider layers in 
which the shear stress decreases away from the wall, as well as those in which the 
shear stress exceeds that a t  the wall. 

Kader & Yaglom adopted the streamwise gradient of kinematic pressure, p - l d P / d x ,  
as the parameter characterizing the departure of a boundary layer from the constant- 
stress pattern. This choice is inappropriate for fully-developed channel flow, where the 
cross-stream gradient of the stress may equal either the pressure gradient or its 
negative : 

throughout the flow. Since the local shear stress plays an important role in the energy 
balance and other dynamic aspects of the turbulence, we adopt the cross-stream stress 
gradient, p- ldr /dy ,  as the relevant dynamic parameter, arguing that the pressure 
gradient is a relatively unimportant consequence of this stress gradient. Since the 
relationship (1 .1)  applies very near the wall in a developing boundary layer, it can be 
argued further that the relevance of the pressure gradient for the inner regions of a 
boundary layer arises from this connexion to the stress gradient at the wall. In  other 
words, the success of Kader & Yaglom in correlating boundary-layer data using the 
gradient d P / d x  may be primarily attributable to the fact that this parameter provides 
an estimate of the gradient dr /dy .  Thus we conclude that the shear-stress gradient 
( d ~ / d y ) ,  is the parameter that should be adopted in developing a unified view of the 
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wall layer, applicable to both channel flows and to boundary layers. Nevertheless, 
Kader & Yaglom’s characterization of the boundary layer may provide a superior 
description of the whole of the layer, including a region beyond the wall layer proper. 

Our experimental results will be fitted into two analytical schemes that have been 
proposed for wall layers with a strong cross-stream variation in shear stress: the equi- 
librium-layer model of Townsend (1961) and the similarity pattern of Kader & Yaglom 
(1978). The essential analytical results are set out in $2  below. The experimental 
results for channel flows are given in their basic form in $ 3  and are presented in the 
spirit of the two analytical schemes in $54 and 5. In  $ 6 we develop an overview of the 
class of flows under consideration, and consider briefly the way in which the core 
region can be defined. 

To provide the basis for these developments, we take note of some fundamental 
relationships among the quantities measured and the parameters defining the ex- 
perimental system. The time-mean velocity at a point in fully-developed flow of the 
kind under discussion will depend as follows on the parameters defining the motion: 

where y is the distance measured from one wall, v is the kinematic viscosity of the fluid, 
h is half the distance between the parallel walls, d is the flow rate per unit width of the 
channel, and Ub is the velocity of the moving belt. Here it has been assumed that both 
walls are effectively smooth, and the measurements show that this is the case for the 
experiments that have been conducted. 

In order to bring together the results for various combinations of flow rate and 
wall velocity, we replace these parameters by the stresses r1 and T~ a t  the two walls: 

U = f ( y ,  V, h, 7 1 , 7 2 ) .  (1.3) 

(Here and subsequently the subscript 1 denotes the wall a t  which the stress is the 
greater and the subscript 2 the other wall.) Even more convenient is the form 

U = f ( y ,  v, h, u*, 4, (1.4) 

where u* = (r,/p)a is the friction velocity based on the shear stress a t  the wall from 
which y is measured, and a: is the gradient of the kinematic shear stress. 

The relationship of the parameters of equations (1.3) and (1.4) to  the quantities 
and U, that are directly under the control of the experimenter cannot be obtained 

from simple arguments, but it is implicit in the experimental results to be presented 
below. 

The parameters of equations (1.3) and (1.4) are connected by 

Here y = r2/r1 is the ratio of the shear stresses at the walls. For Couette flow 

while for Poiseuille flow 

Thus the ranges 

include all the flows under consideration. 

y = 1 and hla:j/u2,, = 0, 

y = -1 and hlal/u2,, = 1. 

1 2 y 2 - 1  and 1 2 h(a(/uz, 2 0 
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Each of the flows studied contains two wall layers. We can distinguish between 
Couette-type flows which have 

y = 72/71 > 0, a, = -la\ < 0, a2 = 101) > 0, 

and Poiseuille-type flows which have 

y = 7&, < 0, a, = a2 = - 1.1 < 0. 

Dimensional considerations allow us to write the result (1.4) in a variety of ways, of 
which 

U l u ,  = f (YU*IV, ahluk Y / h )  (1.6) 

is as convenient as any. The near viscosity independence of the motion in the greater 
part of the flow is more easily taken into account by starting from the equivalent 
result 

The representation (1.4) may be compared with that adopted by Kader & Yaglom, 
namely 

Here the boundary-layer thickness S has been adopted as the lateral length scale, and 
the streamwise gradient in kinematic pressure is taken as the second dynamic para- 
meter, since the shear-stress gradient varies within a boundary layer. Following the 
arguments set out above, we may interpret this as 

u = f (y ,v ,6 ,u* ,p- ldP/dx) .  (1.8) 

thus establishing a more explicit link with the form adopted for channel flow 

2. Analytical models 
2.1. Viscous constant-stress layer 

If the influence of the stress gradient does not penetrate too close to  the wall, there will 
exist near a smooth wall a region with 

UlU* = f(YU*/V) only. (2.1) 

UlU* = Yu*/v or u = (7w/P)Y (2.2) 

Directly adjacent to the wall this reduces to 

defining the linear sublayer, withp = pv the dynamic viscosity. Although an analytical 
derivation of the velocity variation in the part of the viscous layer beyond the linear 
range (the so-called ‘buffer layer’) has not been developed, a number of sufficiently 
accurate semi-empirical formulae are available. Rannie’s expression 

U l u ,  = 14*5tanh(y+/i4.5) for 0 < y+ < 27.5, (2.3) 

where y+ = yu*/v is the scaled distance from the wall, is perhaps the easiest to  manipu- 
late. Others are mentioned in Reynolds (1974) and Hinze (1975). 
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2.2. Viscosity-independent constant-stress layer 

For a region in which neither the stress gradient nor the distant wall (that is, the 
parameter h)  influences the flow, and viscosity has ceased to have an effect, save 
through an effective slip a t  the wall, equation (1.7) reduces to 

-- Y a' = A,  a constant. 
u* dY 

Integration gives the familiar logarithmic formula 

U / u ,  = A In (yu,/v) + B, (2 .4)  

where B is a constant characterizing the change in velocity across the viscous layer. 

limit to the applicability of equation (2.3) provides an estimate of this boundary. 
The inner boundary of this region is that a t  which the viscous layer terminates; the 

2.3. Gradient layer 

For a region somewhat further from the wall, it may happen that the stress gradient is 
dominant, while the wall stress and distant wall have little influence, and viscosity 
is significant only through the 'slip' near the wall. Since none of the parameters v, 
h and u* plays a part, equation (1.7) can be written 

= f ( a y / u $ )  cc (ay/u",)t, 
u* dY 

or (E)' = 49,) a constant. 

Integration gives the half-power law 

u/u* = K1(q /u$P  + K,, (2.5) 

where Kl and K, are constants analogous to those of the logarithmic law (2.4).  
Kader & Yaglom have related these constants and have estimated the inner limit 

of this region by matching the velocity and its gradient to those of the layer closer to 
the wall. If there is a logarithmic layer between the gradient layer and the wall, these 
conditions give 

Y+ = ( 2 A / K l ) 2 u % / a v  and K2 = A In y + + B -  2 A .  (2.6a) 

If there is no logarithmic layer, matching with the linear layer gives 

Y+ = ( K 1 / 2 ) 2 ( a v / u $ )  = -K2.  
Introducing the parameter 

we can write these results as 
P = 4 A 2 ( ~ 3 , / ~ v ) / K ! ,  

Y+ = and K, = A l n I ' + B - 2 A ,  

Y+ = - K2 = A2/I'. 

(2.7a) 

(2.6b) 

(2.7b) 

These simple calculations serve to suggest that  the relationship between the con- 
stants Kl and K, will depend upon the single parameter r. Obviously it is impossible 
for both Kl and K, to be absolute constants, that  is, for both to be independent of a 
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parameter such as u”,av. The estimates obtained above for the value of y+ a t  which 
the gradient layer meets an inner layer turn out to be low by a considerable factor, but 
we shall find that the predictions of K, = f (r) are reasonably accurate. This can be so 
because the curves being matched are nearly coincident over a considerable range 
of y+; hence matching can be imposed a t  rather different values of y+ without 
significantly altering the prediction of the ‘slip constant’ K2. 

2.4. Generalized gradient layer 

Although boundary-layer velocity profiles commonly contain considerable portions 
where U cc y*, as predicted in equation ( 2 . 5 ) ,  it has been found that the constants K, 
and K, vary markedly from layer to layer, that is, as the role of the gradient a varies. 
Since the dependence on the co-ordinate y has been correctly accounted for, and vis- 
cosity influences only the constant K,, the appropriate limiting form of equation 
(1 .7)  must be 

2 = f (aylu:, ah/u$) 
a* dY 

= ( a y / u W ( W & .  
Thus we see that 

From equation (1.6) we see now that the constant K, may have the form 

K, = f(ah/t&). 

K2 = f (ah/& av/ag). 

However, the results (2.6, 7) suggest that the two parameters occur only in the com- 
bination I?, so that 

with dependence on the parameter ahlu2, introduced through Kl. 

2.5. Linear-stress layer 

The analysis of $2.3 makes sense only if the stress distribution 

7 = 7w +pay (2.10) 

is closely approximated by 7 = pay through much of the wall layer. This may be so 
€or a wall layer within which the stress increases away from the waIl (a > 0) ,  but is 
unlikely to be the case if the stress falls (a < 0 )  and the wall stress influences the local 
stress at  least over the range 

y < - rw/pa = - u: fa. 

It is possible, however, that a gradient layer may exist in a region beyond the plane 
on which r = 0, that is, for 

y > - u$/a with - ah/u2, 9 1.  

Townsend (1961) has deduced a velocity distribution corresponding to the stress 
variation (2.10) by assuming a form of equilibrium in which the lateral diffusion of 
turbulence energy is characterized by a constant B,, the diffusion term of the energy 
equation having been scaled with the local shear stress. Thus, setting h = ah/u: for 
compactness, we find 

] = (2A+3B1)( l+hy/h)*+C. (2.11) 
av (1  + hy /h ) )  + 1 

AU U - = - - A l n  
u* u* 
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The constant 4u3,lav is introduced to ensure that 

AU/u,-+ U / u , - A I n y + + 2 A + 3 B l + C  as h+O 

7 

to give a constant-stress layer. Comparison with equation (2 .4)  indicates that 

in this limit. 
2 A + 3 B l + C  = B (2 .12 )  

At the other limit, h y / h  1 ,  we note that equation (2 .11)  gives 

U / u ,  = Aln (4u3,lav) + ( 2 A  + 3B1)  (ay/u2,)* + C .  

Thus we see that Townsend’s model incorporates both logarithmic and gradient 
layers in a comprehensive wall-layer model whose applicability is not obviously 
limited to h > 0. Comparison with equation (2 .5)  indicicates that 

I A In (4u3,Ia.y) + C = K,, 

2 A  + 3B, = Kl. 
(2.13) 

Since A is known to be essentially a universal constant, equation ( 2 . 8 )  demonstrates 
that B, = f (ah lu: )  is not. Which of the two constants C and K, varies least with the 
parameters r or u$/av we shall discover from the experimental results. 

2.6.  Core regions 

For the middle part of both Couette and Poiseuille flows the eddy viscosity is more-or- 
less constant, and a simple analysis (see, for example, Reynrrcis 1974) gives the velocity 
defect distributions 

(2.14) 

= &I?, ( 1  - y / h ) ’  for P-riseuille dow, (2.15) 

where U, is the velocity in the mid-plane, and R, = u*h/e ,  is a flow constant, or 
turbulence Reynolds number, which incorporates the constant eddy viscosity E,. 

The eddy diffusivity is far from uniform in the ‘core’ regions of the channel flows 
to be discussed here, but the expressions (2 .14 ,  15) may still provide convenient 
descriptions of the relatively small velocity variation in the central part of the channel. 
Another possible approach is the introduction of the more general form 

(K- U)/U* 11 -yPIn. (2.16) 

For plane Poiseuille flow, n 21 1.9. 
A problem which we shall meet when discussing the central region of general channel 

flow is that of deciding how the effective friction velocity for that region should be 
defined. 

(U, - U ) / u ,  = R, ( 1  - y / h )  lor Couette flcw. 

3. Experimental results 
3.1. Apparatus 

The parallel section of the channel shown in figure 1 is 2440 mm long; the main 
measurements were made a t  the centre of the channel a t  a station x, = 1980 mm from 
the blowing end. The belt forming the moving floor is 1200 mm wide, some 20 mm 
less than the channel breadth measured between the separating bars which form the 
vertical sides. To eliminate possible flapping, the belt is supported from underneath 
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by an aluminium-surfaced plate. Appropriate tensioning and central running on the 
slightly crowned rollers are achieved by screw adjustment of the bearings supporting 
one of the rollers. 

The plate forming the top of the channel is stiffened to maintain uniformity of 
channel depth and is clamped to the separating bars, which can be changed to vary the 
depth. The depths used in these experiments range from 2h = 44 to 101 mm, giving 
aspect ratios b/2h = 28 to 12, and scaled development distances xJ2h = 45 to 20. The 
flow into the test channel is supplied by a specially constructed wind tunnel, consisting 
of centrifugal fan, diffuser, filters and contraction. To expedite the development of the 
flow, turbulent activity is introduced before the air enters the parallel-sided duct, by 
a coarse mesh of expanded metal located some 150mm upstream of the parallel 
section. Hence the development distances quoted above give a somewhat conservative 
idea of the degree of development of the flow. The mean-velocity and shear-stress 
measurements presented below do not provide critical tests of flow development, but 
measurements of turbulence intensities (to be presented elsewhere) demonstrate that  
the turbulent motion is substantially fully developed a t  the mean measuring station, 
xm = 1980 mm. 

Mean-velocity profiles were measured using a DISA normal hot-wire probe (type 
55P11) in conjunction with a DISA 55M system constant-temperature anemometer, 
a 55M25 linearizer and a Datron 1045 digital voltmeter. The turbulent shear stress 
was measured with a DISA X - G e  probe (type 55P61) in conjunction with two such 
channels, a 55D35 r.m.8. voltmeter and the digital voltmeter. 

The probes were calibrated in pure pressure flow through the test channel itself, and 
the results from the X-wire were checked by comparisons with wall stresses deter- 
mined from (i) the wall-pressure drop along the channel, and (ii) the linear velocity 
variation near the wall. 

The position of the hot-wire probes within the channel could be controlled within 
0.01 mm by a micrometer traversing mechanism. The belt speed was determined by a, 
counter activated by magnetic strips on the belt. 

3.2. Basic results 

Table 1 details the tests carried out. The first group (cases 1-9) are the Couette-type 
flows (y  > 0) to be considered in detail; the second group (cases 10-15) are the 
Poiseuille-type flows (y  < 0) to be looked at in detail. For the remaining flows (cases 
16-26) the same measurements were made, but for the most part they reproduce the 
features illustrated by the cases above and will not be described so completely. 

All but four of these flows were generated by running the belt in the same direction 
as the blown flow of air. For the cases of counter-motion (12, 13, 14, 22) the region of 
reversed flow moving into the channel with the belt was very thin, extending a t  most 
to y/2h = 0.05. Hence a close approximation to full development can still be achieved 
a t  xm = 1980 mm, despite the small amount of air drawn into the channel from the 
nominal exhaust section a t  x = 2440 mm. 

Figure 2 shows the shear-stress variations in the fifteen flows selected for study; 
their linearity gives some evidence of the degree of development of the flows. The 
wall stresses were found by extrapolating these straight lines to the walls. Here, and in 
other measurements, it is possible to move the probe close to the fixed wall, but not as 
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FIGURE 2. Distributions of kinematic shear stress a t  measuring station (y measured from fixed 
wall). V, 1; 0, 2; 0 ,  3; A, 4; 0 ,  5 ;  8 ,  6; 0 ,  7 ;  0 ,  8;  0, 9; +, 10; 0, 11; a, 12; )k, 13; 
x , 14; A ,  15. 

near to the moving wall, since any local protuberance on the belt may damage the 
instrument. In  consequence, one of the two wall layers within each flow can be ex- 
amined in more detail than can the other. 

Figure 3(a)  gives the velocity profiles for the nine Couette-type Aows and figure 
3 ( b )  those for the six Poiseuille-type flows that have been selected for the particular 
study. If y is measured from the fixed wall U is the local fluid velocity; if y is measured 
from the moving wall U is the relative velocity of the fluid. The maximum velocities 
U,, given in table 1 were obtained from these 6gures, and the average velocities U, are 
derived by integrating these profiles. Note that the Reynolds numbers Re, and Re, 
are generally above lo4 and in some cases close to 1 05. These are rather higher Reynolds 
numbers than those achieved in other moving-wall experiments, which are typically 
in the range 5 x lo3 to 3 x 104. 
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FIOURE 3. Profiles of mean velocity (y measured from high-stress wall). (a) Couette-type flows 
(1  2 > 0). ( b )  Poiseuille-type flows (0 > y - 1);  points of maximum velocity (y,,,) and 
shear stress (yo) are indicated. For the symbols see figure 2. 
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FIQURE 4. Semi-logarithmic plotting of velocity profiles. ( a )  y measured from the high-stress 
wall. ( b )  y measured from the low-stress wall. For the symbols see figure 2. 
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4. Reduction of data using the scheme of Kader & Yaglom 
4.1. Viscous layer 

Figure 4 shows the velocity distributions adjacent to the walls, plotted according 
to the constant-stress scaling of equation (2.1). A noteworthy feature of the measure- 
ments in the viscous layers is the abruptness of the transition to the logarithmic law. 
In these measurements the buffer layer is confined to the range 7 < y+ < 22, having 
only about two-thirds the thickness commonly quoted. 

None of the semi-empirical descriptions of the viscous layer reproduces this be- 
heviour (in particular, they indicate a significant departure from the linear law for 
y+ < 7) ,  but equation (2.3) is closer than most such formulae to the buffer-layer 
velocity variation found here. 

4.2. Logarithmic layer 

Figure 4 (a)  shows velocity distributions adjacent to the wall with the larger absolute 
stress. All of these results are represented within 14 % by a single logarithmic formula 

U l u ,  = A l n y + + B  (4.1) 

over the range 20 < y+ < 400, with A = 2.55 f 0.1 and B = 5.1 f 0.15. Departures 
from this trend are in part attributable to experimental scatter, but it is possible to 
distinguish some dependence on flow type, with B = 5-25 for Poiseuille flow, and 
B = 5.0 f 0.10 for most of the other layers. The logarithmic law remains valid for 
higher values of y+ in those cases in which the stress falls off significantly away from 
the wall; seemingly there is a cancelling of the opposing effects of smaller stresses and 
of penetration of the outer or core flow. Figure 4 ( b )  gives the velocity distribution 
near the !ow-stress wall. As would be expected, the logarithmic layer is eroded, and 
ultimately vanishes, as the stress gradient increases in importance. Even so, the log- 
arithmic layers that remain are accurately prescribed by the constants A and B 
given above. 

4.3. Gradient layer 

In figure 5 velocity variations near the low-stress wall are plotted against (ay)* in 
order to investigate the validity of the hypotheses underlying the gradient law (2.5). 
In selecting lines to represent the half-power law and so to determine the constants 
Kl and K,, it is important to take note of the inner limit to the applicability of this 
law. While it may be possible to describe a larger part of the velocity profile with the 
form U = ay* + b (and this procedure may prove useful in simple calculation schemes), 
identification of the gradient layer proper requires that we set aside points which we 
know, from figure 4 ( b ) ,  to lie within the region of logarithmic velocity variation. 

Figure 6 presents the constants of the generalized gradient law as functions of the 
parameters of equations (2.8, 9). I n  figure 6 ( a )  are shown also: 

(i) an empirical formula 
Kl = 19h-4, (4.2) 

which represents the present measurements over the range 1 < h < 400; 
(ii) an empirical formula 

Kl = (2OO/h + 2O)* with h = Sa/u$ (4.3) 
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(& 
FIGURE 5. Plots to determine the gradient layer: positive stress gradient a (y memured from the 
low-stress wall). (a) Cases with moderate wall stress. ( b )  Cases with small wall stress. 0, 2; 
0 ,  3; A.  4; 0, 5; 8,  6 ;  6,  7; 0 ,  8; 0, 9;  X ,  19. 
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1000 2000 

FIGURE 6. Constants for Kader & Yaglom's description of the gradient layer (equations (2.5), 
(2.8), (2.9)). (a) Gradient layer constant K l .  The power law (defined here by a straight line) 
describes the present measurements over a wide range. The other curve is Kader & Yaglom's 
empirical formula for this constant, a.s determined from profiles measured in developing bound- 
ary layers. ( b )  Slip constant K,. The curves (equations ( 2 . 6 b ) ,  (2 .7b ) )  are obtained by matching 
gradient and constant-stress layers. The calculated point on the left is obtained using the analysis 
of the appendix. 
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found by Kader & Yaglom to represent the half-power regions within developing 
boundary layers. 

Comparison of the boundary-layer and channel-flow results is made difficult by the 
differing length scales that have to be adopted for the two kinds of flow. However, it 
is possible to compare the asymptotic values of K, for A 9 1 .  The channel-flow 
measurements suggest a rather lower value, K, N- 3, compared to Kader & Yaglom’s 
K, N- 4.5.  In  addition to values measured from figure 5 ,  figure 6 ( b )  shows the predic- 
tions of K, obtained by introducing the measured values of K, into equations (2 .6b) ,  
(2 .7b) .  The generally good agreement with the predictions based on the assumption ofa 
sharp transition between constant-stress layer and gradient layer is consistent with 
the rather abrupt transitions evident in figure 4 ( b ) .  

The value of K, for the smallest value of r is not in accord with the prediction based 
on matching with a constant-stress viscous layer. In  this extreme case, with a value of 
J? somewhat smaller than those encountered by Kader & Yaglom, the assumption of a 
linear velocity variation is unrealistic. The appendix contains an analysis based on a 
parabolic velocity distribution in the viscous region (that is, for T = pay). For this 
model 

K, = f(r, ahlug). 
The prediction of this theory for the particular case of interest here ia marked in 
figure 6 ( b ) .  

5. Comparison with Townsend’s linear-stress model 
The plots of A U / u ,  versus ( 1  + hy/h) i  in figures 7, 9 and 10 are designed to pick out 

the half-power element of the velocity variation, if one exists. 
Figure 7 presents data for Couette-type flows where a, h > 0. As would be antici- 

pated, there exist considerable regions in which the residual element of the velocity 
variation can be described by 

A U / U ,  = ( 2 A + 3 B 1 )  ( l + h y / h ) * + C .  

The values of the constant 2 A  + 3B, found from these plots are given in figure 8 (a).  
Since the data has been analysed in a different way, these values differ somewhat from 
the rather similar constant K, given in figure 6 ( a ) .  Nevertheless, equation (4 .2)  still 
provides a reasonable prediction over a wide range of the parameter A. The diffusion 
constant B,, far from being independent of flow type, varies from B, N -0.7 for 
h > 100 to B, N 5 for h < 1 .  Marked variations in the apparent value of B, were 
pointed out by Reynolds (1965).  

The range of the constant C evident in figure 8 ( b )  is about the same as that of the 
alternative constant K,. (Here the parameter has been obtained by replacing Kl by 
2 A  + 3B,.) In  this respect there is little to choose between Townsend’s and Kader & 
Yaglom’s representations of the velocity distributions. 

Turning in figure 9 to Poiseuille-type flows where a, A < 0,  we can again discern 
significant regions of half-power variation. Note that the range of (1  + Ay/h)* is in this 
case bounded by the zero-stress plane. The plane of maximum velocity lies within the 
range considered; indeed, we shall see later -that it is near this plane that the validity 
of the half-power laws terminates, 
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FIQURE 7. Plots to determine the residual velocity variation (equation (2.1 1)) of Townsend’s 
description of the wall layer: positive stress gradient a (y measured from the low-stress wail). 
(a)  Cases with moderate wd l  stress. ( b )  Cases with small wall stress. See figure 5 for the symbols. 
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FIGURE 8. Constants for Townsend’s description of the gradient layer: positive stress gradient 
a. (a)  Gradient constant 2A + 3B,. The power law is that of figure G (a). ( b )  Slip constant C .  

We consider next the constants defining the linear regions in figure 9. The value of 
the slope 2A + 3B, is close to 4 for all of the gradient layers that can be distinguished 
(all the high-stress walls, Poiseuille flow and low-stress wall for case 14). The corres- 
ponding diffusion constant is B, 1: -0 .3 .  For most of the profiles the constant C is 
close to 1.7, but for Poiseuille flow C N 2.7. 

Although there are discernible linear regions in other profiles of figure 9 ( b )  - with 
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FIGURE 10. Residual velocity variation for Couette-type flows : high-stress side. 
See figure 2 for the symbols. 

a slope near 2 -these regions are in fact quite well described by the logarithmic 
formula, and there is little justification for introducing a gradient layer. 

No very obvious relationship exists between the constants pertaining for a, h > 0 
and for a, h < 0, save that the slope 2A + 3B, for A < 0 is close to the asymptotic 
value for h > 0. 

The flows considered in figure 9 are those with a relatively large stress gradient 
( -  h > 0.5), in which it is possible that a gradient layer may develop between the 
logarithmic layer and the region much influenced by the distant wall. In  the flows to 
which figure 10 relates, for which - h < 0.5, this does not occur; it appears that there 
is a direct transition from a logarithmic layer to a flow much influenced by the activity 
a t  the other wall. These are the Couette-type flows considered earlier in figures 7 and 
8, but we now examine the high-stress wall; the other wall lies within the range 
0 < (1 + hy/h)* < 1. Although half-power laws do not provide a useful representation 
of these flows, the simple statement AUlu,  _N 5.1 represents a major part of the velo- 
city variation. 

6. An overview of the channel flows 
6.1. Boundaries between regions 

We now gather together what we have learned about the validity of the similarity 
laws proposed in 9 2, in order to develop a comprehensive view of the class of motions 
under discussion. Figure 1 I shows the apparent boundaries between constant-stress 
and gradient layers (taken from figures 4 and 9) and between gradient layers and core 
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FIGURE 11. Boundaries between regions distinguished within the flows : points x are derived 
from figures 4 and 5;  points 0 are derived from figures 7 and 9. (a) Positive stress gradient. 
( b )  Negative stress gradient. 

flows (from figures 5 ,  7 and 9). I n  figure 1 I (a) these boundaries are defined, for 
0-1 < h < 300, by the empirical results 

y+ = 90h-), (6.1) 

y+ = 260h-Q. (6.2) 
The latter provides a lower bound to the extent of the half-power regions, but even so 
the gradient layer is typically five times thicker than the constant-stress region. In  
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some cases the validity of the half-power representation of the velocity profile exceeds 
the limit (6.2) by a factor of two. 

Even for small values of A, for which an improved representation of the velocity 
distribution might be expected, Townsend’s characterization of the flow (figure 7) 
does not systematically extend further from the wall than does the simpler form of 
Kader & Yaglom (figure 5).  

In figure 11 (a )  we note an apparent change in the character of the transition between 
constant-stress and gradient layers a t  very large values of h ( > 400, say). A change in 
the nature of the near-wall flow is also evident in the profile for case 9 shown in figure 
4 ( b ) .  For the points marked 6, 7, 8 and 9 in figure ll(a) we find u:/ccv = 11, 1.2, 
0.35 and 0.03, respectively. Thus it appears that the criterion defining conditions in 
which the nature of the wall layer changes profoundly is u$/uv < 0-3, say. 

Reference to figure 4 ( b )  reveals that even for case 10 the standard logarithmic layer 
is closely, though briefly, approached near the low-stress wall. For this case 

ui//lal v = 0-38. 

Thus it appears that a significant change in the near-wall flow occurs only when 
u$/lal v < 0.3 for cc < 0 as well. 

We turn now to figure 11 (b ) ,  which describes wall layers across which the shear stress 
falls as the wall is left behind. The range of applicability of the logarithmic formula 
varies rapidly near - h = 0.5 and is greatest for Poiseuille flow. The gradient layer is 
not as extensive (where it exists at  all), but in some cases it still exceeds the logarithmic 
layer in thickness. Finally, for large (negative) stress gradients the extent of the con- 
stant-stress layer again falls off with increasing stress gradient. 

In figure 12 the boundaries between the several regions are shown as functions of 
y /h ,  and the positions of maximum velocity (line M )  and of zero shear stress (line 2) 
are superposed. In the following discussion we shall apply the term ‘wall layer’ to all 
those parts of the flow that are effectively described by similarity laws incorporating 
the distance y measured from the adjacent wall. Thus the wall layer comprises viscous, 
logarithmic and possibly gradient layers. The part of the flow that does not satisfy 
this criterion is referred to as the ‘core’. 

For the Couette-type flows we see that the wall layer on the high-stress side occupies 
perhaps 35 yo of the channel, extending to 50 % or more as the stress falls. The whole 
of this layer is described by the logarithmic formula of equation (2.11). The wall layer 
on the low-stress side is a t  least as thick, but (save for y N 1) is composed of a sizeable 
gradient layer as well as a logarithmic layer. Indeed, for y N 0 the viscous layer 
extends to meet the gradient layer, or a t  least the region much influenced by the stress 
gradient. The limit G, is the ‘conservative’ one of figure l l(a) and equation (6.2); 
when it is adopted there remains a substantial core region Getween the two wall 
layers. However, many of the individual gradient-layer limits of figure l l ( a )  lie 
beyond the limit L,. Hence it is possible to describe the whole of a Couette-type flow 
using wall-layer formulae, meeting at  L,, say. 

For the Poiseuille-type flows the wall layer on the high-stress side extends over at  
least 50 % of the channel, about half of it being adequately described by the gradient- 
layer model. The extent of the wall layer on the low-stress side is limited by the line 
M defining the maximum velocities, and the gradient layer is further limited by the 
line Z defining the zero stress point. Nevertheless, the wall layer occupies from 50% 
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7 = 7 2 / 7 1  

FIGURE 12. Boundaries between regions: V,, V,, limits of viscous layers (y+ = 22); L,, L,, limits 
of logarithmic layers (as figure 1 I) ; t?, , a,, limits of gradient or half-power layers (as figure 11). 
The lines M and B denote, respectively, points of maximum velocity and zero shear stress (as 
figure 3). The co-ordinate y is measured from the low-stress wall. 

( y  2: - 1) to 20 yo (y  N 0) of the channel. In  the latter limit the viscous layer thickens 
to occupy nearly 20 % of the channel. 

From figure 12 we see that there are two quite different circumstances in which it is 
impossible to identify a gradient layer. 

( a )  On the high-stress wall of Couette-type flows (y  > 0, - h < 0.5); here there is a 
deep logarithmic layer a.nd the stress gradient is not sufficiently large to dominate the 
flow beyond the logarithmic region. 

(b )  On the low-stress wall of some Poiseuille-type flows ( y  < 0,  - A  < 2.5); here 
the influence of the core flow penetrates so close to the wall that the wall layer termi- 
nates with the logarithmic region. 

Finally, we consider the circumstances in which the viscous region thickens rapidly 
near y = 0. It is plausible to relate this marked extension of the influence of viscosity 
to the phenomenon of 'relaminarization ' often observed in boundary layers subjected 
to favourable pressure gradients (a  < 0 )  for u$/lalv < 50. For an adverse pressure 
gradient (a  > 0 )  Kader & Yaglom have argued that this criterion will indicate the 
onset of intermittent separation of a developing boundary layer. While a developed 
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channel flow will not experience separation, it is reasonable to suppose that the nature 
of the near-wall flow will be profoundly influenced if the parameter u:/av is 
sufficiently small. 

Considering cases 5 and 11, which Iie just outside the region of rapid extension of the 
viscous region, we find that 

us,/uv = 75, -57. 



Velocity distributions in plane turbulent channel flows 25 

It appears then that the criterion u$/(a(v < 50 defines conditions in which the viscous 
layer occupies a significant fraction of the wall layer. On the other hand, we noted 
earlier that the structure of the wall layer may be substantially unaltered until a 
much lower value of the parameter u$//IaIv (0.3,  say) is reached. 

6.2. Core region: Couette-type flows 

The velocities plotted in figure 13 have been scaled using the ‘effective’ friction 
velocity 

u*, = ( ~ 2 * ~ + ~ 2 * ~ ) *  = ~ ( l 7 ~ 1 +  1721)/~~*, (6.3) 

which is conceived to represent the turbulent activity in the core region, contributed 
to by the wall layers on either side. With this scaling the slopes of the core regions of 
most of the Couette-type flows are virtually the same, only the two most asymmetrical 
profiles departing from this pattern. 

The widely applicable core-region law is seen from figure 13(b) to be 

The value quoted by Reynolds (1974) for this slope parameter is 2.6, with account 
taken of the way in which the friction velocity has been defined here (equation ( 6 . 3 ) ) .  
The higher value obtained from the present analysis may be attributable to the strict 
way in which we have defined the core region, omitting points that might in a more 
superficial analysis have been assigned to the core rather than to the wall layers. 

The velocity increment across the linear core region is a rather small fraction of the 
wall-to-wall velocity change, A U l u ,  < 2-5 compared with UJu ,  N 30. 

6.3.  Core region: Poiseuille-type flows 

Figure 14 (a)  gives the velocity-defect variations, scaled using the friction velocity 
of equation (6 .3 ) ,  as functions of distance measured from the point of maximum 
velocity. The channel depth 2h has been adopted as the scale of length; this can be 
interpreted as the sum of the distances to the two walls from the point of maximum 
velocity, yml+ynL2.  It was pointed out in connection with equation (2.16) that for 
Poiseuille flow itself the velocity defect varies as (Aylh)” with n = 1.9; this index 
proves to give the best approximation to the velocity variations within the more 
general class of flows considered here. 

The scaling adopted in figure 14(a) does gather most of the velocity profiles close to 
a single line 

AUlu, ,  = 11.5(Ay/2h)1’0. (6 -5 )  

However, the variations on the high-stress side of the two profiles for which y 2: 0 
are not well represented. Figure 14(b) presents the velocities on the high-stress sides 
of the flows using velocity and length scales more appropriate to that part of the flow, 
namely u * ~  and yml.  All of the profiles are adequately described by the single law 

A U / U * ~  = 4 - 4 ( A ~ / ~ m l ) ” 9 .  (6 .6)  

If a like procedure is adopted for the low-stress side of the flows, a different formula 
is obtained, and the scatter is much greater than that of figure 14(a) .  



26 M .  M .  M .  El Telbany and A .  J .  Reynolds 

3 .  1 

+ 
- 

6 -  

4 -  

+ 
High-stress wall 

I I I I I I I 

- 

0 
- 

f n l  I 

P 

2 

0 0.2 0.4 0.6 0 8  

( I - & )’” 
FIGURE 14. Core flows: Poiseuille-type flows. (a )  Velocity defect scaled using the friction velocity 
of equation (6.3). ( b )  Velocity defects on the high-stress side scaled using friction velocity and 
length scale for that part of the flow. +, 10; 0, 11; B, 12; X ,  14; 0, 15; x ; 0 ,  24. 
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Although the empirical formulae (6.5), (6.6) specify the velocity defects with good 
accuracy for A y l h  or Ayly,, < 0-6, the outer limits to the wall layer (see figure 12) 
indicate that the core formulae need be used only over the range A y l h  c 0.4 on the 
low-stress side and A y / h  < 0.3 on the high-stress side. That is to say, there is a sub- 
stantial region in which the core and wall-layer laws overlap. Moreover, in the region 
between the wall layers, we have A U l u ,  < 0.5, showing that a very precise prescrip- 
tion of the core velocity is not required for many purposes. 

The constant in the empirical law (6.5) is somewhat lower than that appropriate to 
Poiseuille flow alone. This is evident in figure 14 and is also suggested by the empirical 
value R, = 13 (see equation (2.15)) quoted by Reynolds (1974), which indicates a 
constant around 18 in a law of the form (6.5). 

7. Conclusions 
A number of conclusions concerning specific aspects of these flows have been noted in 

the body of the paper; here we attempt to identify matters of more general application. 
Townsend’s analysis, leading to equation (2.1 l) ,  provides an adequate description 

of the velocity variation through large parts of these flows. When generalized, his 
results are of wider application than Kader & Yaglom’s piece-wise representation of 
the wall layer; but, when the two formulations are applicable (a > 0 ) ,  there is little to 
choose between them. For both it is necessary that the two constants characterizing 
the gradient layer are varied in an appropriate manner with some parameter specifying 
the stress gradient, as Kader & Yaglom pointed out would be the case. 

For positive stress gradients the influence of the gradient on the wall layers of these 
channel flows is substantially that found by Kader & Yaglom for developing boundary 
layers. This suggests that the empirical wall-layer models derived here could be 
applied profitably in the analysis of boundary layers. 

Although earlier discussions of the gradient layer have concentrated on boundary 
layers near separation, where the stress gradient is positive, Townsend’s results have 
been found to apply equally to flows with negative stress gradients. Indeed, the 
empirical laws are of simpler form in those cases of negative stress gradient for which 
gradient layers are found to exist. 

The influence of the pressure gradient (or, as we view it here, the stress gradient) 
on the viscous layer appears to be more complex than has been realized. While the 
viscous layer starts to thicken rapidly when the accepted criterion for wall-layer 
relaminarization is -reached, there is some evidence that the structure of the wall 
layer remains substantially unaltered until a much more stringent condition is 
satisfied. 

Finally, the most appropriate velocity scale for the core regions of most of these 
flows appears to be the friction velocity based on the sum of the absolute values of 
the two wall stresses. 

The apparatus used in these experiments was in large measure designed and devel- 
oped by Dr M. Farrashkhalvat and Mr M. Kalirai, formerly students of Brunel 
University. The first author has also to acknowledge with thanks the financial assis- 
tance of the Egyptian Education Bureau during this investigation. 
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Appendix. Limiting theory for 7 = pay 

The prediction of K2 in the half-power law based on matching with a constant-stress 
viscous layer is unrealistic when I? < 0.9. For rW N 0 the shear stress distribution can 
be expressed as 

7 = pay. 

Hence in the viscosity-dominated region 

dU 
p- = pay. 

dY 

The integral of equation (A I )  may be written as 

Matching the gradient layer result 

with equation (A 2), we obtain 

Differentiation of equation (A 3) gives 

and substitution into equation (A 3) gives 

where 

Note that the constant K, is no longer a function of the single parameter I', but has a 
separate dependence on ui/av. The prediction of K2 for case 9 using this theory (see 
figure 6b)  is in good agreement with the measured value. 
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